Timesys Getting Started Guide for NXP/Embedded Artists EA313x
Contents
- Introduction
- Prerequisites
- Preparing the Target
- Preparing the Host
- Booting the Board
- Additional Information
Introduction
This document will describe in detail the procedures for booting a Linux kernel image and mounting a root file system from an SD Card on the NXP/Embedded Artists EA313x.
Prerequisites
Host Requirements
To properly boot a board using software from Timesys, your host machine must meet the following requirements:
- Modern GNU/Linux Distribution. While you can use nearly any modern Linux distribution released in the last 24 months, Timesys recommends one of the following:
- Ubuntu (Most recent release or LTS)
- Fedora (Most recent release)
- An internet connection on the Development Host.
- Root or sudo permission on the Development Host.
- A copy of the Linux Kernel (zImage-2.6.28-ts-armv5l) and Root File System (rootfs.tar.gz) for the Target Board downloaded from Factory. These are found in the output directory of your online build, or in the directory build_armv5l-timesys-linux-<libc>/images/ on the command line.
- If you are booting your root file system over the network, you will need two network cards installed and configured in the Development Host. One to communicate normally with your LAN/WAN while installing host packages, the other to communicate solely with the target board.
- An available serial port on your Development Host.
Target Requirements
To boot the NXP/Embedded Artists EA313x, you will need the following items:
- NXP/Embedded Artists EA313x Board
- Serial NULL Modem Cable
- USB A-to-Mini-B Cable
- SD Card
Once you have all of the necessary components, you should perform the following steps:
- Connect the debug port of the board to the serial port of your workstation using the null modem cable.
- Ensure that the UART jumpers are set to USB Mode (Both jumpers on bottom two pins).
- Connect the mini-B side of the USB cable to the USB port on the right-hand side of the board.
Preparing the Target
Preparing the Secure Digital Card
The EA313x boots from an SD card. Some kits may be shipped with one that contains a sample kernel and RFS preloaded. We will be replacing these with the kernel and RFS from Factory. If you are using a blank SD card or have trouble replacing the software on the preloaded one, see Partitioning the SD Card. Otherwise, skip directly to Writing Boot Files to the SD Card.Before you begin, you should determine the name of your SD card on your host system. To do so:
- Connect the SD card to your host system. Many modern systems have SD card slots on the case, or you can purchase a USB SD Card Reader for around $15 US.
- Determine the device name of the SD Card. This can be done using dmesg. In the following example, the device is /dev/sdX, which contains one partition sdX1.
$ dmesg | tail
[88050.184080] sd 4:0:0:0: [sdX] 1990656 512-byte hardware sectors: (1.01 GB/972 MiB)
[88050.184821] sd 4:0:0:0: [sdX] Write Protect is off
[88050.184824] sd 4:0:0:0: [sdX] Mode Sense: 03 00 00 00
[88050.184827] sd 4:0:0:0: [sdX] Assuming drive cache: write through
[88050.185575] sd 4:0:0:0: [sdX] 1990656 512-byte hardware sectors: (1.01 GB/972 MiB)
[88050.186323] sd 4:0:0:0: [sdX] Write Protect is off
[88050.186325] sd 4:0:0:0: [sdX] Mode Sense: 03 00 00 00
[88050.186327] sd 4:0:0:0: [sdX] Assuming drive cache: write through
[88050.186330] sdX: sdX1
Partitioning the SD card
If you want to use a different SD card or its contents become corrupted, you can use the fdisk tool to create a single Linux partition on your SD card. Please note that all data on the card will be lost upon completion of these steps.- Unmount the partition if it was automounted by using the umount command.
$ umount /dev/sdX1
- As root, run the fdisk utility on the drive.
$ sudo fdisk /dev/sdX
- In fdisk, Delete the existing partition table and create a new one using the o command.
Command (m for help): o
Building a new DOS disklabel with disk identifier 0x8b025602.
Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.
- Create a new primary partition using the n command.
Command (m for help): n
Partition type:
p primary (0 primary, 0 extended, 4 free)
e extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-30679039, default 2048):
Using default value 2048
Last sector, +sectors or +sizeK,M,G (2048-30679039, default 30679039):
Using default value 30679039
- Verify that the partition table is correct by using the p command. It should look similar to the following:
Command (m for help): p
Disk /dev/sdX: 15.7 GB, 15707668480 bytes
64 heads, 32 sectors/track, 14980 cylinders, total 30679040 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x6eaae8f8
Device Boot Start End Blocks Id System
/dev/sdX1 2048 30679039 14773960 83 Linux
- This step will destroy all data on the SD Card - Write the partition table to the card using the w command.
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.
- Format the first partition of the SD card with the ext2 filesystem using the mkfs.ext2 tool.
$ sudo /sbin/mkfs.ext2 -L rfs /dev/sdX1
Writing Boot Files to the SD Card
- Mount the partition. You can remove and reinsert the card to trigger the automount, or you can use the mount command to mount the partition to an arbitrary location.
$ sudo mount /dev/sdX1 /media/rfs
- As root, extract the rootfs.tar.gz archive to the mounted directory. This file is located at build_armv5l-timesys-linux-<libc>/images/rfs/ on Desktop Factory builds.
$ sudo tar xzf rootfs.tar.gz -C /media/rfs
- If you have included the kernel image in your rootfs, this next step is not necessary
As root, create the boot directory on the RFS partition of the card.
$ sudo mkdir /media/rfs/boot
- As root, copy the uImage file, zImage-2.6.28-ts-armv5l, to the boot directory on the RFS partition of the card.
$ sudo cp zImage-2.6.28-ts-armv5l /media/rfs/boot/
- As root, umount the SD Card.
$ sync
$ sudo umount /media/rfs
- Remove the SD Card from the host machine, and insert it into the SD Card slot on the target board located near the RS232 jack. You should hear the card 'click' into place.
Writing the Bootloader Image to the Card
- Copy the bootloader image to the card. This file is located at build_armv5l-timesys-linux-<libc>/images/bootloader/ on Desktop Factory builds.
$ sudo cp ~/factory/build_armv5l-timesys-linux-<libc>/images/bootloader/apex.bin ./
- Unmount the SD Card and insert it into the SD Slot on the EA313x board.
Configuring Serial Communication
The EA313x uses a serial debug port to communicate with the host machine. The commands discussed in this section are meant to be performed by a privileged user account. This requires the root login or prepending each command with sudo.Using Minicom
- Start minicom on your host machine in configuration mode. As root:
# minicom -o -s -w
- A menu of configuration should appear. Use the Down-arrow key to scroll down and select the Serial port setup option, and press Enter.
- Verify that the listed serial port is the same one that is connected to the target board. If it is not, press A, and enter the correct device. This is /dev/ttyUSB0 on most Linux distributions.
- Set the Bps/Par/Bits option by pressing the letter E and using the next menu to set the appropriate values. You press the key that corresponds to the value 115200, then press Enter.
- Set Hardware flow control to No using the F key.
- Set Software flow control to No using the G key.
- Press Enter to return to the main configuration menu, and then press Esc to exit this menu.
- Reset the board, and wait for a moment. If you do not see output from the board, press Enter several times until you see the prompt. If you do not see any output from the board, and have verified that the serial terminal connection is setup correctly, contact your board vendor.
TIP: If you experience an error similar to Device /dev/ttyUSB0 is locked when starting minicom, it usually means that another process is using the serial port (which is usually another instance of minicom). You can find the process that is currently using the serial port by executing the following:
/dev/ttyUSB0: 28358
PID TTY STAT TIME COMMAND
28923 pts/0 S+ 0:00 minicom
This process can also be killed directly with fuser as root. Please use this command with caution:
Using GNU Screen
To quickly connect to a board using Gnu Screen, execute the following:
For more information about using screen, please consult the man page, or view the manual online at http://www.gnu.org/software/screen/manual/screen.html
Installing Bootloaders
The EA313x is not packaged with a bootloader preinstalled. However, Timesys provides a port of the Apex bootloader that is built by the Factory, which can be loaded onto the board. The method for loading the bootloader is as follows:- Load the bootloader onto the board over the serial interface.
- Once the bootloader is running, copy the binary from the SD card into the board's RAM.
- Copy the bootloader binary into SPI flash.
Loading the bootloader
- Make sure that the SD card is properly inserted into the SD slot on the EA313x board.
- Plug the board the USB port of the computer. Make sure the serial jumpers are in the lower two USB positions.
- Set the boot jumpers on the board to:
GPIO Pin Value BOOT0 L BOOT1 H BOOT2 L - Reset the board.
- Send the bootloader file to the serial port using cat. This file is located at build_armv5l-timesys-linux-<libc>/images/bootloader/apex.bin on Desktop Factory builds.
$ cat build_armv5l-timesys-linux-<libc>/images/bootloader/apex.bin > /dev/ttyUSB0
- Wait for the red RX LED to turn off before proceeding any further.
Writing the bootloader to SPI Flash
- Open minicom and configure for the board. You should see an apex> prompt, or a spinning indicator. If you see the indicator, press Ctrl-C to get to the prompt.
- Copy the apex binary from the SD card to RAM:
apex> copy ext2://1/apex.bin 0x30008000
62664 bytes transferred
- Copy the binary from RAM to SPI Flash:
apex> copy 0x30008000+89908 spinor:0</pre>Note that 89908 is the actual size of the apex binary, which can be found in the output of the previous command.
- Set the boot jumpers on the board to:
GPIO Pin Value BOOT0 L BOOT1 L BOOT2 H
Preparing the Host
Setting up the network
The commands discussed in this section are meant to be performed by a privileged user account. This requires the root login or prepending each command with sudo.Identify the network adapter connecting the Host to the Target
Timesys only supports direct Ethernet connections from the development Host to the Target board. Ideally, the development Host would have two network adapters; one adapter to connect to your LAN, and one Ethernet card to connect directly to the Target board with a crossover cable or Ethernet hub. If your development Host only has one network interface it must be directly connected to the Target board. The Ethernet adapter connected directly to the target board must be:- Configured with a proper static IP address and Subnet Mask.
- Connected directly to the target board with either a crossover cable or its own Ethernet hub.
inet addr:192.168.3.244 Bcast:192.168.3.255 Mask:255.255.254.0
inet6 addr: fe80::219:bbff:fe49:ff0e/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:57214 errors:0 dropped:0 overruns:0 frame:0
TX packets:47272 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:43109083 (41.1 MB) TX bytes:6308206 (6.0 MB)
Interrupt:16
eth1 Link encap:Ethernet HWaddr 00:10:b5:4a:c1:a9
inet addr:10.0.0.1 Bcast:10.0.0.255 Mask:255.0.0.0
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:21 Base address:0x1100
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:1974 errors:0 dropped:0 overruns:0 frame:0
TX packets:1974 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:226637 (221.3 KB) TX bytes:226637 (221.3 KB)
Installing the server daemons on the development host
- On Ubuntu 11.04 and newer:
# apt-get install xinetd tftp tftpd isc-dhcp-server \
nfs-kernel-server portmap
- On Ubuntu 10.11 and older:
# apt-get install xinetd tftp tftpd dhcp3-server \NOTE: Older versions of Ubuntu use nfs-common and nfs-user-server in place of nfs-kernel-server
nfs-kernel-server portmap
- On Fedora Core:
# yum install xinetd tftp tftp-server dhcp nfs-utils
Important:
After installing these packages the DHCP server software may start automatically. Having the DHCP server running while you are connected to a LAN can interfere with the operation of other computers. After the DHCP service installs and starts issue these commands to stop the DHCP service and prevent it from starting automatically at boot:
- To stop the dhcp service:
- On Ubuntu 11.04 and newer:
# service isc-dhcp-server stop
- On Ubuntu 10.11 and older:
# service dhcp3-server stop
- On Fedora Core:
# /etc/init.d/dhcp stop
- On Ubuntu 11.04 and newer:
- To prevent the service from starting automatically:
- On Ubuntu 11.04 and newer:
# chmod 644 /etc/init.d/isc-dhcp-server
- On Ubuntu 10.11 and older:
# chmod 644 /etc/init.d/dhcp3-server
- On Fedora Core:
- Click the System Menu
- Select Administration
- Select Services
- Select dhcpd
- Click the Customize button
- Uncheck Runlevel 2, 3, 4 and 5
- On Ubuntu 11.04 and newer:
Disable SELinux and Firewall on Fedora Core
On Fedora Core, SELinux and the firewall will interfere with many of the services that are needed to work with the target board. These should be disabled before continuing.
Generally Ubuntu does not have these services running by default.
- Disable SELinux:
- Click the System Menu
- Select Administration
- Select SELinux Management
- Change System Default Enforcing Mode to Disabled
- Disable Firewall:
- Click the System Menu
- Select Administration
- Select Services
- Select iptables
- Click the Customize button
- uncheck Runlevel 2, 3, 4 and 5
Setting up DHCP
- Edit the dhcpd configuration file:
- On Ubuntu, edit /etc/dhcp/dhcpd.conf and include the following lines (note: on older versions of Ubuntu this file is at either /etc/dhcp3/dhcpd.conf or /etc/dhcpd.conf):
subnet 10.0.0.0 netmask 255.0.0.0 {
host targetboard {
fixed-address 10.0.0.10;
hardware ethernet 12:34:56:78:9a:bc;
option root-path "/full/path/to/rfs";
filename "zImage-2.6.28-ts-armv5l";
}
}
- On Fedora Core, edit /etc/dhcpd.conf and include the following lines:
ddns-update-style ad-hoc;
subnet 10.0.0.0 netmask 255.0.0.0 {
host targetboard {
fixed-address 10.0.0.10;
hardware ethernet 12:34:56:78:9a:bc;
option root-path "/full/path/to/rfs";
next-server 10.0.0.1;
filename "zImage-2.6.28-ts-armv5l";
}
}
- On Ubuntu, edit /etc/dhcp/dhcpd.conf and include the following lines (note: on older versions of Ubuntu this file is at either /etc/dhcp3/dhcpd.conf or /etc/dhcpd.conf):
- Test the DHCP server on the network card that is connected to your
development board. For this example assume eth1. This command will
start the DHCP server in the foreground and output any status or error
messages to the screen.
- On Ubuntu up to 12.04 LTS:
# service dhcp3-server restart
- On Ubuntu 12.04 LTS and later:
# service isc-dhcp-server restart
- On Fedora Core:
# /usr/sbin/dhcpd -d eth1
- It is recommended to start the DHCP server in this manner each time you need to boot your Target board.
- On Ubuntu up to 12.04 LTS:
Setting up TFTP
- Edit the xinetd.conf file
- On Ubuntu, edit /etc/xinetd.conf and add the following lines just above the line
that reads includedir /etc/xinetd.d.
service tftp
{
socket_type = dgram
protocol = udp
wait = yes
user = root
server = /usr/sbin/in.tftpd
server_args = -s /tftpboot
disable = no
}
- On Fedora Core, the tftp-server package creates a /etc/xinetd.d/tftp file. Edit this
file and change the disable line from
yes to no. The contents of the file are:
service tftp
{
socket_type = dgram
protocol = udp
wait = yes
user = root
server = /usr/sbin/in.tftpd
server_args = -s /tftpboot
disable = no
per_source = 11
cps = 100 2
flags = IPv4
}
- On Ubuntu, edit /etc/xinetd.conf and add the following lines just above the line
that reads includedir /etc/xinetd.d.
- Create the /tftpboot folder if it does not exist:
# mkdir /tftpboot
- Copy the kernel image to the /tftpboot directory:
# cp /path/to/kernel/image/zImage-2.6.28-ts-armv5l \
/tftpboot/zImage-2.6.28-ts-armv5l
NOTE Also copy other files that are required for booting, such as a device tree blob, to /tftpboot.
- Restart the xinetd server with the following command:
# /etc/init.d/xinetd restart
- Test the TFTP server with the following commands
# tftp localhost
tftp> get zImage-2.6.28-ts-armv5l
Received 1456898 bytes in 0.4 seconds
tftp> quit
- Set xinetd to start automatically on Fedora Core.
Ubuntu users will skip this step.
- Click the System Menu
- Select Administration
- Select Services
- Select xinetd
- Click the Customize button
- Check Runlevel 2, 3, 4 and 5
Setting up NFS
- As root, extract rootfs.tar.gz to a directory
and note the path. This path will be referred to as /full/path/to/rfs
in this document.
# mkdir /full/path/to/rfs
# cd /full/path/to/rfs
# sudo tar xvf rootfs.tar.gz
- Export this path by editing /etc/exports to include a line similar
to the following:
/full/path/to/rfs 10.0.0.10(rw,no_root_squash)
- Restart the NFS services
- On Ubuntu issue the following commands in order:
# service portmap stopNOTE: Older versions of Ubuntu use nfs-common and nfs-user-server in place of nfs-kernel-server
# service nfs-kernel-server stop
# service portmap start
# service nfs-kernel-server start
- On Fedora Core:
# /etc/init.d/nfs restart
- On Ubuntu issue the following commands in order:
- Set nfsd to start automatically on Fedora Core. Ubuntu users will
skip this step.
- Click the System Menu
- Select Administration
- Select Services
- Select NFS
- Click the Customize button
- Check Runlevel 2, 3, 4 and 5
Booting the Board
Set Environment Variables
You must set a few environment variables in order to load the kernel and boot the board. This is done with the setenv and saveenv commands in Apex. On the target, set the following environment variables:Variable | Value |
cmdline | console=ttyS0,115200 ip=dhcp root=/dev/nfs rw |
apex> saveenv
Configuring the Network Interface
You can configure the network interface using the command ipconfig. It takes an ip address as a parameter.
Example
hostip 10.0.0.10
Load The Kernel
You can use copy to load the kernel into RAM.
Example
1426192 bytes transferred
Boot the Kernel
The boot command is used to boot the kernel. It loads the file that was previously uploaded using the copy command.
Example
ARCH_ID: 9998 (0x270e)
ATAG_HEADER
ATAG_MEM: start 0x30000000 size 0x04000000
ATAG_CMDLINE: (48 bytes) 'console=ttyS0,115200 ip=dhcp root=/dev/nfs rw'
ATAG_END
Booting kernel at 0x30008000...
Additional Information
Factory Documentation